

Часть 1

Презентации к лекциям по курсу «Основы координационной и супрамолекулярной химии», весна 2010

Рассматриваемые вопросы

Модельные подходы к объяснению параметров химических связей в координационных соединениях. Электростатические представления Косселя и Льюиса. Модель мультипольных взаимодействий и концепция электронейтральности. Поляризационная теория Пирсона.

• Теория отталкивания электронных пар валентной оболочки как удобная модель для предсказания геометрии молекул. Представления о расположении точечных зарядов на сфере и геометрия координационных полиэдров.

actb • Метод валентных связей. Представления о гибридизации центральных атомов. Низко- и высокоспиновые комплексы. Внутри- и внешнеорбитальные комплексы.

• Теория кристаллического поля (ТКП). Диаграммы *dⁿ*-уравнений в полях разной симметрии. Энергия стабилизации кристаллическим полем и другие параметры, следующие из ТКП. Спектрохимический ряд лигандов. Интерпретация спектральных и магнитных свойств комплексов на основе ТКП.

• Молекулярно-орбитальные подходы в координационной химии. Теория поля лигандов. Распределение электронной плотности в молекулах комплексов. Заселенность орбиталей, заряды actb атомов, переносы зарядов. Донорные и акцепторные лиганды с позиции их электронной структуры. Типичные диаграммы МО для комплексов с о-донорными лигандами, комплексами с π-акцепторными лигандами. Нефелоксетический эффект и нефелоксетический ряд центральных атомов как мера ковалентности.

• Анализ возможностей и ограничений применения подходов к описанию химической связи в координационных соединениях. Стратегия применения квантовохимических расчетных методов к исследованию структуры и свойств координационных соединений.

Геометрия координационных соединений. Факторы, влияющие на строение координационных полиэдров (природа центрального атома, электростатические эффекты и др.). Эффект Яна-Теллера. Проблема стабилизации редких координационных чисел и степеней окисления комплексообразователей.

1. Электростатические представления Кистяковский, Льюис, Коссель и др.

Согласно подходу Косселя химическая связь образуется за счет полной передачи одного или нескольких электронов от одного атома к другому, с последующим электростатическим взаимодействием (притяжением) образовавшихся заряженных частиц (теория ионной связи).

Согласно подходу Льюиса химическая связь образуется за счет объединения неспаренных электронов и образования обобществленной электронной пары, смещенной или не смещенной к одному из атомов (теория ковалентной связи).

Характеристики координационных

соединений в подходах Косселя и Льюиса

Свойство	Подход Косселя	Подход Льюиса
Главная валентность	Определяется числом электронов, отданных или принятых атомом при ионизации	Определяется числом электронов, предоставляемых данным атомом для образования поделенной электронной пары
Побочная валентность	Обусловлена взаимодействием образовавшихся ионных электростатических полей. Само координационное число определяется равновесием сил притяжения и отталкивания и геометрическими факторами	Обусловлена числом электронных пар, заполняющих вакантные орбитали атома металла
Наилучшие результаты	Получены при описании неорганических комплексов	Получены при описании свойств комплексов с органическими лигандами

Электростатические модели

Два электростатических подхода к описанию координационных связей:

модель мультипольных взаимодействий
концепция электронейтральности

Их достоинства:

- наглядность моделей взаимодействия заряженных частиц
- опирается на хорошо изученные физические законы (закон Кулона)
- доступность для математической обработки

Модель мультипольных взаимодействий (ММВ)

Схема образования комплекса [AgI₂]⁻

Полная энергия системы E, отсчитываемая от энергии частиц, удаленных друг от друга на бесконечно большое расстояние, складывается из ион-ионного ($z_M z_L e^2 / r_{ML}$), иондипольного ($z_M \mu_L e^3 / r_{ML}^2$) и подобных слагаемых Ионные радиусы по Гольдшмидту и Полингу (значения r_6 соответствуют КЧ 6, для КЧ 4, 8 и 12 рекомендуется использовать поправки: $r_4 = 0.94r_6$; $r_8 = 1.03r_6$; $r_{12} = 1.12r_6$)

TT.	<i>r</i> ₆ , нм	Л	<i>r</i> ₆ , нм		[
Ион	По Гольдшмидту	По Полингу	Ион	По Гольдшмидту	По Полингу
Li ⁺	0.078	0.060	Cd ²⁺	0.103	0.097
Na ⁺	0.098	0.095	Hg^{2+}	0.112	0.110
K^+	0.133	0.133	Ga ³⁺	0.062	0.062
Rb^+	0.149	0.148	In ³⁺	0.092	0.081
Cs^+	0.165	0.169	Ge ⁴⁺	0.044	0.053
Be^{2+}	0.034	0.031	Sn^{4+}	0.074	0.071
Mg^{2+}	0.078	0.065	Pb ⁴⁺	0.084	0.084
Ca^{2+}	0.106	0.099	Mn ²⁺	0.091	0.080
Sr^{2+}	0.127	0.113	Fe ²⁺	0.083	0.075
Ba^{2+}	0.143	0.135	Co ²⁺	0.082	0.072
${ m B}^{3+}$	0.020	_	Ni ²⁺	0.078	0.069
Al^{3+}	0.057	0.050	Pb ²⁺	0.132	0.121
Sc ³⁺	0.083	0.081	Co ³⁺	0.064	_
Y ³⁺	0.106	0.093	Fe ³⁺	0.070	_
La ³⁺	0.122	0.115	Mn ³⁺	0.070	_
Ce^{4+}	0.102	0.101	H-	0.154	0.208
U^{4+}	0.105	0.097	F-	0.133	0.136
Th^{4+}	0.110	0.102	Cl-	0.181	0.181
Ti ⁴⁺	0.064	0.068	Br⁻	0.196	0.195
Zr^{4+}	0.087	0.080	I-	0.220	0.216
Ag^{+}	0.113	0.126	O ^{2–}	0.132	0.140
Zn^{2+}	0.083	0.074	S ^{2–}	0.174	0.184
			Se ^{2–}	0.191	0.198

Эффективные ионные радиусы по Шеннону и Превиту для s²- и s²p⁶-ионов (нм).

Ион		Координационное число								
ИОН	2	3	4	5	6	7	8	9	10	12
O ^{2–}	0.135	0.136	0.138	_	0.140	_	0.142			
F-	0.1285	0.130	0.131	_	0.133					
Li ⁺			0.059	_	0.074					
Na ⁺			0.099	0.100	0.102	0.113	0.116	0.132		
K^+					0.138	0.146	0.151	0.155	0.159	0.160
Rb ⁺					0.149	0.156	0.160	_	_	0.173
Cs^+					0.170	—	_	0.178	0.181	0.188
Be ²⁺		0.017	0.027							
Mg^{2+}			0.049	_	0.072	_	0.089			
Ca ²⁺					0.100	0.107	0.112	0.118	0.128	0.135
Sr ²⁺					0.116	0.121	0.125	_	0.132	0.144
Ba ²⁺					0.136	0.139	0.142	0.147	0.152	0.160
Sc ³⁺					0.073	—	0.087			
Y ³⁺					0.0892	—	0.1015	0.110		
La ³⁺					0.1061	0.110	0.118	0.120	0.128	0.132
Ti ⁴⁺				0.053	0.0605					
Zr^{4+}					0.072	0.078	0.084			
Hf^{4+}					0.071	—	0.083			

Стереохимическая концепция Гиллеспи – Ньюхолма

Критические значения $r_{\rm L}/r_{\rm M}$ и $r_{\rm M}/r_{\rm L}$

КЧ	$r_{\rm L}/r_{\rm M}$	$r_{\rm M}/r_{\rm L}$
3	6.5	0.15
4	4.4	0.22
5	2.4	0.41
6	2.4	0.41
7	1.7	0.59
8	1.5	0.65
9	1.4	0.73
10	1.2	0.83
11	1.1	0.90
12	1.1	0.90

Электростатическая модель позволяет предполагать устойчивость координационных соединений: она должна расти по мере роста заряда и уменьшения радиуса центрального иона, а также заряда и полярности лигандов. Но и здесь для некоторых случаев (связанных с образованием дополнительных π -связей) мультипольная модель не работает: установлено, что однозарядный и довольно крупный ион Ag⁺ дает гораздо более устойчивые цианидные комплексы, нежели s^2p^2 -катион Ca²⁺.

Концепция электронейтральности

$D^N_{\dots} = \sqrt{D_{\dots} D_{\dots}}$	Элемент	χ	Элемент	χ	Элемент	χ
$\boldsymbol{\nu}_{M-L} \boldsymbol{\sqrt{\nu}_{M-M}\nu_{L-L}}$						
	Li	1.0	С	2.5	Ag	1.9
D^{N} 125 5(Na	0.9	Si	1.8	Cu	1.9
$D_{M-L} - D_{M-L} \approx 125.5(\chi_M - \chi_L)$	Κ	0.8	Ti	1.5	Au	2.4
	Rb	0.8	Zr	1.4	Zn	1.6
$i = 16 \chi_M - \chi_L + 3.5 \chi_M - \chi_L ^2$	Cs	0.7	Hf	1.3	Cd	1.7
	Be	1.5	Ν	3.0	Hg	1.9
	Mg	1.2	Р	2.1	Ga	1.6
Концепция	Ca	1.0	As	2.0	In	1.7
ектроотрицательности носит	Sr	1.0	Sb	1.9	Tl	1.8
не чисто электростатический	Ba	0.9	Bi	1.9	Ge, Sn, Pb	1.8
характер, поскольку заряды	Ra	0.9	0	3.5	V, Nb	1.6
переносятся между	В	2.0	S	2.5	Та	1.5
екоторыми энергетическими	Al	1.5	Se	2.4	Cr	1.6
ровнями, положение которых	Sc	1.3	Те	1.9	Мо	1.8
зависит от эффективного	Y	1.3	F	2.0	W	1.7
заряда атома. данная	La – Lu	1.1 – 1.2	Cl	4.0	Mn	1.5
концепция также не может	Ac	1.1	Br	3.0	Re	1.9
интерпретировать	Th	13	T	2.8	Fe – Ni	1.8
спектральных, магнитных и	Pa	1.5	At	2.5	$R_{\rm H} = Pd$	2.2
	I U I I	1.5	1 11	2.5	$\Omega_{s} = Pt$	2.2
связанных с их электронной	Nn	1.7		2.2	03-11	2.2 9
структурой.	тр	1.3				

Электроотрицательности атомов элементов по Полингу (х, кДж/моль)

$$D_{M-L} - D_{M-L}^{N} \approx 125.5(\chi_{M} - \chi_{L})^{2}$$

$$i = 16 |\chi_{M} - \chi_{L}| + 3.5 |\chi_{M} - \chi_{L}|^{2}$$
Концепция
электроотрицательности носит
не чисто электростатический
характер, поскольку заряды
переносятся между
некоторыми энергетическими

Поляризационная теория Пирсона

Концепции жестких и мягких кислот и оснований (ЖМКО)

• Катионы с электронной конфигурацией *ns²np*⁶, характеризующиеся высоким положительным зарядом (плотным электронным облаком высокой симметрии), малыми размерами, малой поляризуемостью под действием анионов и не имеющие легко возбуждаемых внешних электронов, относят к *жестким кислотам*. К ним относятся катионы всех элементов групп IA, IIA, группы IIIA (кроме TI) и IVA (Si, Ge), некоторых d-элементов, а также все катионы f-элементов.

• Катионы d-элементов с невысоким зарядом (от +1 до + 3), а также катионы таллия (Tl⁺ и Tl³⁺), характеризующиеся большими размерами, высокой поляризуемостью и имеющие легко возбуждаемые внешние электроны, относятся к *мягким кислотам*.

• К жестким основаниям принадлежат лиганды, донорные атомы которых обладают низкой поляризуемостью, высокой электроотрицательностью и трудно окисляются (табл. 11).

• К *мягким основаниям* относятся лиганды, донорные атомы которых обладают высокой поляризуемостью, низкой электроотрицательностью и легко окисляются.

• Катионы-кислоты, принадлежащие к группам VA, VIA и VIIA, а также Sn и Pb (группа IVA), Co, Ni, Zn, Rh, занимают в данной классификации промежуточное положение (табл. 10). То же относится и к лигандам-основаниям.

• Главное положение концепции ЖМКО: наиболее устойчивые комплексы образуются между жесткой кислотой (ЖК) и жестким основанием (ЖО) или между мягкой кислотой (МК) и мягким основанием (МО):

Жесткие кислоты	Мягкие кислоты
H ⁺ , Li ⁺ , Na ⁺ , K ⁺	$Cu^+, Ag^+, Au^+, Tl^+, Hg^+$
Be ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Mn ²⁺	Pd ²⁺ , Co ²⁺ , Pt ²⁺ , Hg ²⁺
Al ³⁺ , Sc ³⁺ , Ga ³⁺ , In ³⁺ , La ³⁺ , Nd ³⁺ , Ce ³⁺ ,	$CH_{3}Hg^{+}, Co(CN)_{5}^{2-}, Pt^{4+}, Te^{4+}$
Gd ³⁺ , Lu ³⁺ , Cr ³⁺ , Co ³⁺ , Fe ³⁺ , As ³⁺ , CH ₃ Sn ³⁺	Tl ³⁺ , Tl(CH ₃) ₃ , BH ₃ , Ga(CH ₃) ₃
Si ⁴⁺ , Ti ⁴⁺ , Zr ⁴⁺ , Th ⁴⁺ , U ⁴⁺ , Ce ⁴⁺ , Hf ⁴⁺ , WO ⁴⁺ ,	GaCl ₃ , GaI ₃ , InCl ₃
Sn^{4+}	R^+ , RSe^+ , RTe^+
UO ₂ ²⁺ , (CH ₃) ₂ Sn ²⁺ , VO ²⁺ , MoO ³⁺	I ⁺ , Br ⁺ , HO ⁺ , RO ⁺
Be(CH ₃) ₂ , BF ₃ , B(OR) ₃ , Al(CH ₃) ₃ , AlCl ₃ ,	I ₂ , Br ₂ , ICN
AlH ₃	Тринитробензол и др.
RPO ²⁺ , ROPO ²⁺ , ROSO ²⁺ , SO ₃	Хлоранил, хиноны и др., $(CN)_2C=C(CN)_2$
I ⁷⁺ , I ⁵⁺ , Cl ⁷⁺ , Cr ⁶⁺	O, Cl, Br, I, N, RO*, RO ₂
$\text{RCO}^+, \text{CO}_2,$	Атомы металлов
НХ (молекулы, образующие Н-связи)	

Кислоты, занимающие промежуточное положение:

Fe²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Pb²⁺, Sn²⁺, Sb³⁺, Bi³⁺, Rh³⁺, Ir³⁺, B(CH₃)₃, SO₂, NO⁺, Ru²⁺, Os²⁺, R₃C⁺, C₆H₅⁺, GaH₃

Жесткие основания	Мягкие основания
H ₂ O, OH ⁻ , F ⁻ , CH ₃ COO ⁻ , PO ₄ ³⁻ ,	R ₂ S, RSH, RS ⁻ , I ⁻ , SCN ⁻ , S ₂ O ₃ ²⁻ ,
SO ₄ ²⁻ , Cl ⁻ , CO ₃ ²⁻ , ClO ₄ ⁻ , NO ₃ ⁻ ,	R_3P , R_3As , $(RO)_3P$, CN^- , RNC , CO ,
ROH, RO ⁻ , R_2O , NH_3 , RNH_2 ,	C_2H_4, C_6H_6, H^-, R^-
N ₂ H ₄	

Основания, занимающие промежуточное положение:

C₆H₅NH₂, C₅H₅N, N₃⁻, Br⁻, NO₂⁻, SO₃²⁻, N₂

Согласно этому подходу взаимодействие ЖЕСТКОЕ ОСНОВАНИЕ – ЖЕСТКАЯ КИСЛОТА обусловлено главным образом благоприятным электростатическим взаимодействием между донором с высокой орбитальной электроотрицательностью и акцептором с низкой орбитальной электроотрицательностью.

С другой стороны, взаимодействие между МЯГКИМИ КИСЛОТАМИ И МЯГКИМИ ОСНОВАНИЯМИ является результатом ковалентной координации донора с низкой орбитальной электроотрицательностью и акцептора с высокой.

2. Метод валентных связей (MBC)

Представления о донорно-акцепторном взаимодействии

Примеры:

Образование парамагнитного иона [FeF₆]⁴⁻ и диамагнитного [Fe(CN)₆]⁴⁻

Типы гибридизации и соответствующие им пространственные конфигурации

Тип молекулы	Т	Пространственная
или иона	тип гиоридизации	конфигурация
MX ₂	<i>dp</i> , <i>sp</i> *	Линейная
	d^2, p^{2*}	Угловая
MX ₃	d^3, d^2s, dp^2, sp^{2*}	Треугольная
	dsp	Несимметричная плоская
	$d^{2}p, p^{3*}$	Тригональная, пирамидальная
MX ₄	$d^{3}s, sp^{3*}$	Тетраэдрическая
	dsp^{2*}, d^2p^2	Квадратная
	d^2sp, d^3p, p^3d^*	Неправильная тетраэдрическая
MX ₅	dsp ³ *	Тригональная бипирамидальная
	$d^4s, d^2sp^2, d^4p, d^2p^3$	Тетрагональная пирамидальная
	d^3p^2	Пентагональная
	d^5	Пентагональная пирамидальная
MX ₆	d^2sp^{3*}	Октаэдрическая
	d^4sp, d^5p	Тригональная призматическая
	p^3d^3	Тригональная антипризматическая
MX ₇	d ³ sp ³ , d ⁵ sp	Октаэдрическая, седьмая частица находится над центром
	d^4sp^2, d^4p^3, d^5p^2	одной из групп
	<i>sp</i> ³ <i>d</i> ³ *	Тригональная призматическая, седьмая частица находится
MX ₈	d ⁴ sp ³ *	в центре прямоугольной грани
	<i>d</i> ⁵ <i>p</i> ³	Пентагональная бипирамидальная
	d^5sp^2	Додекаэдрическая
		Антипризматическая 15
		Гранецентрированная призматическая

Правило 18 электронов

С позиций МВС в рамках правила 18 электронов: устойчивы такие карбонилы, в которых все d-, s- и p-орбитали металла заполнены электронными парами. Стабильными являются карбонилы [Cr(CO)₆], [Fe(CO)₅], [Ni(CO)₄]. У пентакарбонила железа [Fe(CO)⁵⁻] – d¹sp³гибридизация. Если металл имеет нечетное число электронов, то карбонилы димерны. Примерами могут служить [Mn(CO)₅]₂,

 $[Co(CO)_{4}]_{2}$.

16

+ v CO MO 1π *

орбитальная вакансия 🔶 неподелённая пара

лиганд - π-акцептор, металл - π-донор.

неподелённая пара 🛶 орбитальная вакансия

Связь л-типа дативная:

Базис: v Me AO d

3. Теория кристаллического поля (ТКП)

Основные положения ТКП:

- 1) между центральным атомом и лигандами действуют силы электростатического притяжения двух типов: ион-ионное (например, в [CoF₆]³⁻) и ион-дипольное (например, в [Co(NH₃)₆]³⁺). Равновесная конфигурация комплекса определяется результирующим действием сил притяжения и отталкивания ионов (или иона и диполей);
- 2) окружающие центральный атом лиганды рассматриваются как бесструктурные частицы определенного заряда и радиуса (F⁻, Cl⁻, Br⁻, NO₃⁻, SO₄²⁻) или как частицы с определенными дипольными моментами (H₂O, NH₃), создающими вокруг центрального иона электростатическое поле;
- 3) центральный атом рассматривается детально с учетом его электронной структуры и применением квантово-химического подхода для описания поведения электронов, находящихся на *d* и *f*-оболочках.

Количественные характеристики ТКП

• энергия (параметр) расщепления Δ

• энергия стабилизации кристаллическим полем (ЭСКП)

Энергия расщепления:

- зависит от размеров центрального иона, его заряда, электронной конфигурации и от природы лиганда;

- экспериментально определяют по спектрам поглощения координационных соединений в видимой и УФ-областях. Возбуждение электрона с нижнего уровня на верхний сопровождается поглощением энергии и появлением в спектре полосы, максимум которой соответствует энергии расщепления Δ;

- значение Δ обычно выражают в волновых числах v = $1/\lambda$ см⁻¹

- большинство значений Δ лежит в пределах от 10 000 до 30 000 см⁻¹ (1 см⁻¹ соответствует энергии $E = hvc = 6.26 \cdot 10^{-34} \cdot 3 \cdot 10^{10} \cdot 1 = 2.0 \cdot 10^{-23}$ Дж = 11.96 Дж·моль⁻¹ = 1.25 \cdot 10^{-4} эВ);

- параметр расщепления в октаэдрическом поле больше, чем в тетраэдрическом, содержащем те же лиганды, и равен $\Delta_{0KT} = \frac{9}{4} \Delta_{TETD}$;

- в ряду 3*d*-, 4*d*-, 5*d*-элементов при прочих равных условиях Δ увеличивается от периода к периоду на 30–35%. Например, для комплекса $[Co(NH_3)_6]^{3+} \Delta$ составляет величину 23 000 см⁻¹, для $[Rh(NH_3)_6]^{3+} - 34\ 000\ см^{-1}$, для $[Ir(NH_3)_6]^{3+} - 41\ 000\ см^{-1}$;

- величина Δ возрастает при переходе от комплексов двухзарядных ионов 3*d*-элементов к трехзарядным. Так для [Fe(H₂O)₆]²⁺ и [Fe(H₂O)₆]³⁺ значения Δ равны 10 400 см⁻¹ и 13 700 см⁻¹, соответственно.

Спектрохимический ряд

$I^{-} < Br^{-}, CI^{-} \approx SCN^{-} \approx N_{3}^{-} < F^{-} < (NH_{2})_{2}CO < OH^{-} < C_{2}O_{4}^{-2} \approx H_{2}O < NCS^{-} \approx H^{-} < NH_{2}CH_{2}CO < NH_{3} < En \approx SO_{4}^{-2} < NH_{2}OH < NO_{2}^{-} < CN^{-}$

		Распределение <i>d</i> -электронов					
Конфи-		по t_{2g} и e_g -орбиталям					
гурация	примеры	Слабо	е поле	Сильное поле			
		t_{2g}	$e_{ m g}$	t_{2g}	$e_{ m g}$		
d^0	Sc ³⁺ , Ca ²⁺						
d^{l}	Ti ³⁺ , V ⁴⁺	\downarrow		\downarrow			
d^2	Ti ²⁺ , V ³⁺	$\downarrow \downarrow$		\rightarrow \rightarrow			
d^3	V ²⁺ , Cr ³⁺	$\downarrow \downarrow \downarrow \downarrow$		$\downarrow \downarrow \downarrow$			
d^4	Cr^{2+} , Mn^{3+}	$\downarrow \downarrow \downarrow \downarrow$	\downarrow	$\downarrow\uparrow \ \downarrow \ \downarrow$			
d^5	Mn^{2+} , Fe^{3+} , Os^{3+}	$\downarrow \downarrow \downarrow \downarrow$	\rightarrow	$\downarrow\uparrow \; \downarrow\uparrow \; \downarrow$			
d^6	Fe^{2+} , Co^{3+} , Ir^{3+}	$\downarrow\uparrow\downarrow\downarrow\downarrow$	\rightarrow \rightarrow	$\downarrow\uparrow \; \downarrow\uparrow \; \downarrow\uparrow$			
d^7	Co ²⁺ , Ni ³⁺ , Rh ²⁺	$\downarrow \uparrow \; \downarrow \uparrow \; \downarrow$	\rightarrow	$\downarrow\uparrow \; \downarrow\uparrow \; \downarrow\uparrow$	\downarrow		
d^8	Ni ²⁺ , Pd ²⁺ , Pt ²⁺ ,	$\downarrow\uparrow \; \downarrow\uparrow \; \downarrow\uparrow$	$\downarrow \downarrow$	$\downarrow\uparrow ~\downarrow\uparrow ~\downarrow\uparrow$	$\downarrow \downarrow$		
	Au ³⁺						
d^9	Cu^{2+}, Ag^{2+}	$\downarrow\uparrow \downarrow\uparrow \downarrow\uparrow \downarrow\uparrow$	$\downarrow\uparrow$ \downarrow	$\downarrow\uparrow \; \downarrow\uparrow \; \downarrow\uparrow$	$\downarrow\uparrow$ \downarrow		
d^{10}	Cu ⁺ , Zn ²⁺ , Cd ²⁺ ,	$\downarrow\uparrow \downarrow\uparrow \downarrow\uparrow \downarrow\uparrow$	$\downarrow\uparrow$ $\downarrow\uparrow$	$\downarrow\uparrow \downarrow\uparrow \downarrow\uparrow \downarrow\uparrow$	$\downarrow\uparrow$ $\downarrow\uparrow$		
	Ag^{+}, Hg^{2+}, Ga^{3+}						

Влияние силы лиганда на параметр расщепления

 \uparrow ↑ \uparrow 1 $\frac{\uparrow}{z^2} \quad \stackrel{}{\xrightarrow{}} \quad \frac{\uparrow}{x^2 - y^2}$ Ε $\uparrow \downarrow$ $\uparrow \downarrow$ ↑↓ €↓ € ↑↓ $\underline{\uparrow}$ € € xz уz xy [Ni(en)₃]²⁺ (фиол.) $[Ni(H_2O)_6]^{2+}$ (зеленый) [Ni(NH₃)₆]²⁺ (синий) $[Cu(H_2O)_6]^{2+}$ [Cu(NH₃)₄(H₂O)₂]²⁺

Реализация спиновых состояний

у ионов с конфигурациями $d^4 - d^7$

Конфи- гурация	Примеры	Р, см⁻¹	Лиганд ы	Δ, см ⁻¹	Конфигурация октаэдрического иона	Спиновое состояние
.14	Cr ²⁺	23 500	H ₂ O	13 900	$t_{2g}^{3} e_{g}^{1}$	BC
a ⁻	Mn ³⁺	28 000	H ₂ O	21 000	$\boldsymbol{t_{2g}^3 e_g^1}$	BC
d^5	Mn^{2+}	25 200	H ₂ O	7 800	$t_{2g}^3 e_g^2$	BC
	Fe ³⁺	30 000	H ₂ O	13 700	$\boldsymbol{t}_{2\boldsymbol{g}}^{3}\boldsymbol{e}_{\boldsymbol{g}}^{2}$	BC
	Fe ²⁺	17 700	H ₂ O	10 400	$t_{2g}^4 e_g^2$	BC
46		17 700	CN-	33 000	$\boldsymbol{t}_{2\boldsymbol{g}}^{6}\boldsymbol{e}_{\boldsymbol{g}}^{0}$	НС
a°	Co ³⁺	21 000	F-	1 300	$\boldsymbol{t}_{2\boldsymbol{g}}^{4}\boldsymbol{e}_{\boldsymbol{g}}^{2}$	BC
		21 000	NH ₃	23 000	$\boldsymbol{t}_{2\boldsymbol{g}}^{6}\boldsymbol{e}_{\boldsymbol{g}}^{0}$	НС
d7	Co ²⁺	22 500	H ₂ O	10 100	$t_{2g}^5 e_g^2$	BC

Р – энергия спаривания – определяется как разность энергий межэлектронного взаимодействия низкоспиновой (НС) и высокоспиновой (ВС) конфигураций, деленная на число спаривающихся электронов. Очевидно, что низкоспиновое состояние реализуется тогда, когда *P* < Δ , а высокоспиновое при *P* > Δ . Например, согласно ТКП, в соответствие с характером распределения электронов по *d*-орбиталям комплекс [Co(NH₃)₆]³⁺ – низкоспиновой, а комплекс [СоF₆]³⁻⁻ – высокоспиновой. 24

$$\Im CK\Pi_{_{0KT}} = (0.4n - 0.6m)\Delta_{_{0KT}},$$

 $\Im CK\Pi_{_{TETP}} = (0.6n - 0.4m)\Delta_{_{TETP}},$

где *n* – число электронов на нижнем подуровне, *m* – число электронов на верхнем подуровне.

ЭСКП есть мера упрочнения химической связи, а, следовательно, и устойчивости координационных соединений

Объяснения свойств комплексов с позиций ТКП

1. Изменения окислительно-восстановительных свойств ионов и их комплексных форм:

$$Co^{3+} + e^- \leftrightarrow Co^{2+}; E^o = +1.82 B$$

 $[Co(NH_3)_6]^{3+} + e^- \leftrightarrow [Co(NH_3)_6]^{2+}; E^0 = +0.1 B$
 $[Co(CN)_6]^{3-} + e^- \leftrightarrow [Co(CN)_6]^{4-}; E^0 = -0.83 B$

Объяснить!

2. Электронные спектры комплексов *d*-металлов

Wavelength (Color)	Color	
Absorbed	Observed	
400 nm (violet)	yellow-green	
450 nm (blue)	orange	
490 nm (blue-green)	red	E
530 nm (green)	purple	Ľ
570 nm (yellow-green)	violet	
580 nm (yellow)	dark blue	
600 nm (orange)	blue	
650 nm (red)	blue-green	
720 nm (purple)	green	

28

3. Магнитные свойства комплексов

 $[Fe(CN)_6]^{4-}$ и $[Fe(H_2O)_6]^{2+}$. Так как CN^- – лиганд сильного поля, а H_2O – слабого, то в сильном поле d^6 -электроны иона Fe^{2+} образуют низкоспиновой комплекс; суммарный спин S = 0, и комплексный ион $[Fe(CN)_6]^{4-}$ диамагнитен, что подтверждается экспериментальными данными, а в слабом поле четыре из шести d-электронов неспарены и S = 2, поэтому ион $[Fe(H_2O)_6]^{2+}$ – парамагнитен.

 $\mu = 2.84 \sqrt{\chi_{M} T}$ (эксперимент) $\mu_{s} = g\sqrt{s(s+1)}$ (простейшая теория) $\mu_{S+L} = \sqrt{4S(S+1) + L(L+1)}$

обычно $\mu_{s} < \mu < \mu_{S+L}$

Диамагнитные вещества – выталкиваются из магнитного поля Парамагнитные вещества – втягиваются в магнитное поле (число неспаренных электронов)

$$[\mathbf{Ru}(\mathbf{H}_{2}\mathbf{O})_{6}]\mathbf{Cl}_{3} \ \mathbf{Ru}^{3+} \mathbf{d}^{5} \ \mu_{\scriptscriptstyle \mathsf{ЭКСП}} = 1.98 \ \mathbf{mB} => \mathbf{S} = \frac{1}{2} \ (\mathbf{t}_{2g}{}^{5}\mathbf{e}_{g}{}^{0})$$

 $[Ti(H_2O)_6]Cl_3 Ti^{3+} d^1 \mu_{abb} = 1.73 \text{ mB } \mu_{abc} = 1.70 \text{ mB}$ $K_3[MnF_6] Mn^{3+} d^4 \mu_{abb} = 4.90 \text{ mB } \mu_{abc} = 4.95 \text{ mB}$

n – число неспаренных электронов

S – суммарный спин

 $\mu_{\varphi\phi\phi} = 2 [S(S+1)]^{1/2} = [n(n+2)]^{1/2}$ (магнетон Бора)